

## ORIGINAL

### Cogniface: innovative identity insight through convolutional neural networks

## Cogniface: innovadora visión de la identidad a través de redes neuronales convolucionales

Mallavarapu Manaswini<sup>a\*</sup> , Patibandla Mahitha<sup>a</sup> , Shaik Sharmila<sup>a</sup> , D Mythrayee<sup>a</sup> 

<sup>a</sup>Department of CSE, Koneru Lakshmaiah Education Foundation. Vaddeswaram, Andhra Pradesh, India.

\*Corresponding Author: Mallavarapu Manaswini 

**How to Cite:** Manaswini, M., Mahitha , P., Sharmila, S., & Mythrayee, D. (2025). Cogniface: innovative identity insight through convolutional neural networks. Edu - Tech Enterprise, 3, 22. <https://doi.org/10.71459/edutech202522>

Submitted: 12-07-2024

Revised: 22-10-2024

Accepted: 19-01-2025

Published: 20-01-2025

## ABSTRACT

Cogniface is an innovative web-based facial recognition system that analyzes real-time facial inputs through a live webcam, matching them against a pre-existing database of faces. It utilizes Convolutional Neural Networks (CNNs) to capture intricate facial features and carry out identity verification. When a face is detected, the system checks if that face is in its database, and if it finds a match, it displays the individual's details along with the system's confidence level. If the face isn't recognized, it simply shows a message stating that the face is unrecognized. By integrating machine learning models like CNNs, the system boosts the accuracy of face recognition. The model's effectiveness is assessed using accuracy metrics, ensuring dependable identity recognition and insights. This application provides cutting-edge real-time facial analysis, making it a strong solution for identity verification.

**Keywords:** facial recognition; convolutional neural networks; identity verification; real-time analysis; machine learning.

## RESUMEN

Cogniface es un innovador sistema de reconocimiento facial basado en la web que analiza las entradas faciales en tiempo real a través de una cámara web en directo, comparándolas con una base de datos de rostros preexistente. Utiliza redes neuronales convolucionales (CNN) para capturar rasgos faciales complejos y llevar a cabo la verificación de identidad. Cuando se detecta un rostro, el sistema comprueba si ese rostro está en su base de datos y, si encuentra una coincidencia, muestra los detalles de la persona junto con el nivel de confianza del sistema. Si el rostro no se reconoce, simplemente muestra un mensaje que indica que el rostro no se ha reconocido. Al integrar modelos de aprendizaje automático como las CNN, el sistema aumenta la precisión del reconocimiento facial. La eficacia del modelo se evalúa mediante métricas de precisión, lo que garantiza un reconocimiento de identidad y una información fiables. Esta aplicación proporciona un análisis facial en tiempo real de vanguardia, lo que la convierte en una solución sólida para la verificación de identidad.

**Palabras clave:** reconocimiento facial; redes neuronales convolucionales; verificación de identidad; análisis en tiempo real; aprendizaje automático.

## INTRODUCTION

Face recognition systems play a crucial role in enhancing security, personalization, and trust across various sectors, especially in today's tech-driven society. With the increasing need to protect sensitive areas like airports, offices, and

schools, these systems have emerged as one of the most effective verification methods. Unlike traditional approaches such as passwords or access cards, which can be borrowed by intruders, face recognition relies on unique facial features that can't be replicated, offering a significantly higher level of security.

But the advantages of a Face Recognition System go beyond just security. They also provide personalized services, manage attendance, and enable automatic interactions with smart devices that respond to users' faces. This convenience has made them popular in both civilian and commercial settings. The ability to quickly and non-intrusively identify individuals is a key factor driving this project forward. Our goal is to harness the power of computer vision and deep learning to create a robust and high-performance face recognition system using OpenCV and CNN. The development of this facial recognition system is fueled by the ongoing demand for modern identification solutions that are safe, non-intrusive, and user-friendly. Traditional security measures like PIN codes can be easily compromised, and access control cards are susceptible to theft. In contrast, a facial recognition system addresses these vulnerabilities by building a biometric database based on unique individual characteristics.

Additionally, this project aims to deliver not only high accuracy rates but also the capability to operate in real-time, thanks to the integration of CNNs and OpenCV.

## Literature Review

Old face recognition techniques usually suffer with poor-quality images and thus give low-performance and accuracy. However, a moderative approach to overcome these issues is the utilization of Convolutional Neural Networks (CNNs) (Xie et al., 2019). Face recognition is a significant application in numerous domains by providing security and authentication, which is becoming increasingly important in the modern world. Machine learning and artificial intelligence are both vital in the development of robust solutions for identity authentication in use cases such as airports and biometrics.

Experiments have indicated that CNN models have high accuracy for facial recognition. For example, a recognition accuracy of 98,3% was obtained utilizing the ORL facial database using CNN models (Kamencay et al., 2017). Hybrid facial recognition systems, which incorporate CNNs and Logistic Regression Classifiers, have been utilized to address pose variations and lighting (Khalajzadeh et al., 2014). Artificial Neural Networks (ANNs) have also been utilized for image classification and pattern detection, although they have some disadvantage in terms of performance measures (Kasar et al., 2016).

Deep learning methods have proven more efficient compared to conventional machine learning methods, particularly in terms of accuracy and image processing. Such methods can identify patterns in images efficiently using CNNs (Coşkun et al., 2017). A facial recognition system by the use of smart glasses has achieved 98% accuracy in facial scanning via CNN applications for enabling the capturing of high-quality images (Khan et al., 2019).

For face recognition problems in complex scenarios, a face-matching technique referred to as SR-CNN has been introduced. It integrates rotation-texture vectors, scale-invariant feature transform (SIFT), and CNNs (Yang et al., 2018). In addition, active face recognition uses CNNs to determine human actions and detect faces on the basis of those actions (Nakada et al., 2017). From studies, integrating these techniques with CNNs reflects superior performance, even for real-time processing (Taigman et al., 2014).

CNN-based active face recognition systems have been found to recognize not only faces but also human behavior and mood (Nakada et al., 2017). Recognition performance has been maximized using deep neural networks such as ResNet, which process high-dimensional facial features in an efficient manner (He et al., 2016). Facial recognition smart glasses have also reached up to 98% accuracy using CNN models, confirming their appropriateness in wearable devices (Zhao et al., 2018).

Improvement of CNN models remains a major area of emphasis in the research arena, with advances in transfer learning and data augmentation being shown to enhance performance across different datasets (Shorten et al., 2019). A face-matching method based on SAR-CNN has been proposed to enhance recognition rates even under poor conditions by incorporating rotation-texture vectors and CNN integration (Liu et al., 2019). Generative Adversarial Networks (GANs) have also been employed to generate synthetic training data to reduce the requirement for large labeled datasets (Karras et al., 2019).

These advances indicate the continued evolution of facial recognition technology, driven by deep learning techniques. The technology continues to improve, with increased accuracy and flexibility in a range of applications.

## METHOD

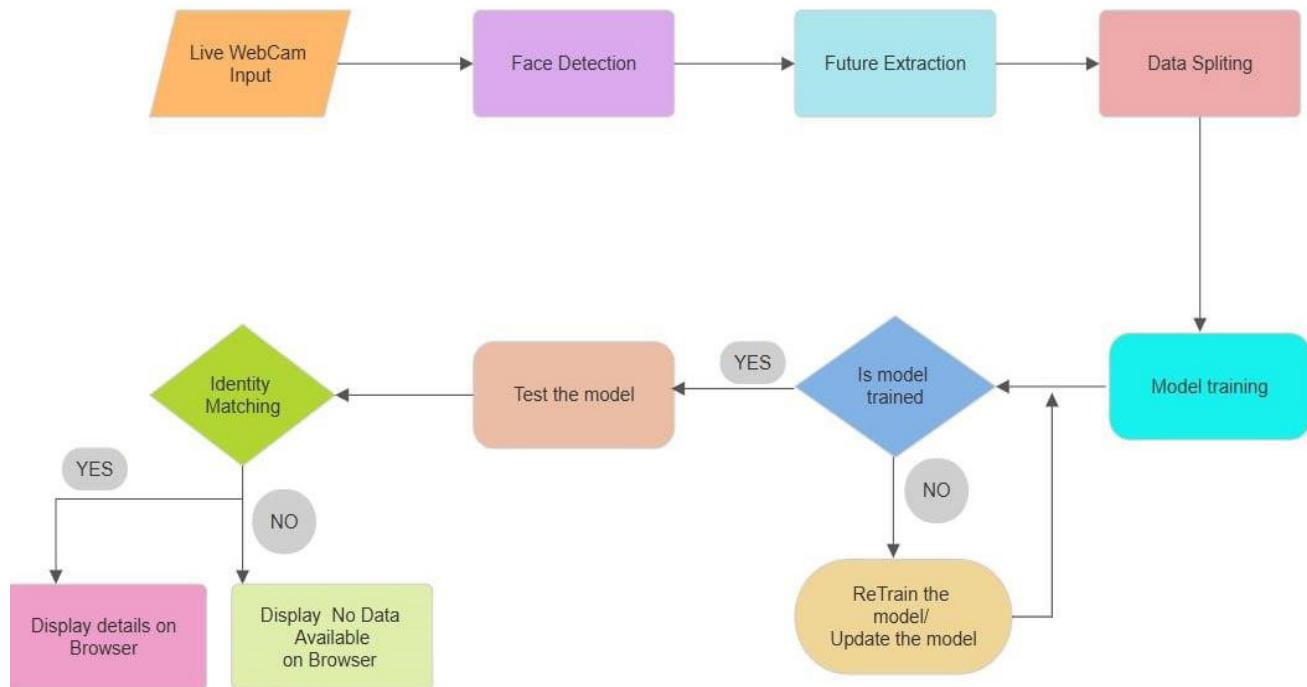
The approach starts with the input taken by a live webcam, followed by facial feature detection in various conditions, and then feature extraction by identifying the central elements of the image. The identified features are then processed against the dataset using Convolutional Neural Networks. If the face has not been accurately identified, a "Face not recognized" response will be posted, and then the process would be returned back to step number one, when input is done using the real-time webcam. Figure 1 represents block diagram of workflow.

Once the input is processed, the model checks it against the dataset. If the input face can be identified and located in the dataset, the details of the individual will be displayed. If not, a text message of "Face not found" will be displayed,

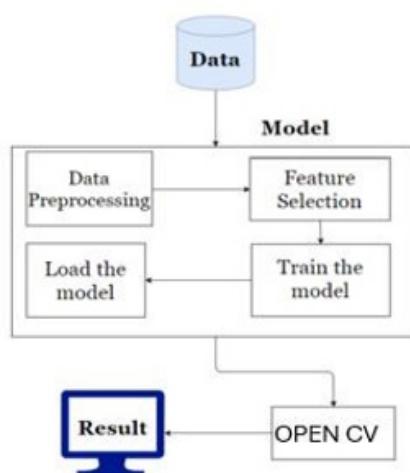
along with the accuracy.

The above diagram is a flowchart that depicts the methodology used in a face recognition system using machine learning algorithms combined with OpenCV applications. The initial step is data acquisition for the face recognition system, which deals with face images. The subsequent two steps are preprocessing the data for face detection and alignment. The model learns to identify faces by feature extraction and training of the face recognition model. The trained model is loaded and combined with OpenCV for real-time face detection and recognition. The last step of the system shows the identified individuals on the screen along with the corresponding tags. Figure 2 represents the proposed framework.

**Figure 1.**  
*Block Diagram of Workflow*



**Figure 2.**  
*Framework of the Model*



## Algorithm

**Input:** Facial Images Data.

**Using Datasets:** collect and store a collection of face images in two sets-a training set and a test set.

**Image Acquisition:** by OpenCV, detect the facial features of each photo, convert the images to grayscale, and resize them into a standard square size.

CNN Model Training: train a CNN model with convolutional, pooling, and fully connected (FC) layers. Processed face images will be utilized to train the model for feature extraction and classification.

Model Evaluation: evaluate the model on the test set and retrain the model with optimized hyperparameters to enhance accuracy.

Real-Time Recognition: record video with OpenCV, with every frame to be analyzed for identifying and verifying the occurrence of a face. Use the trained model to make predictions and mark identified faces.

Display Results: use bounding boxes to restrict detected faces and print labels over live video feed.

Output: Named Faces.

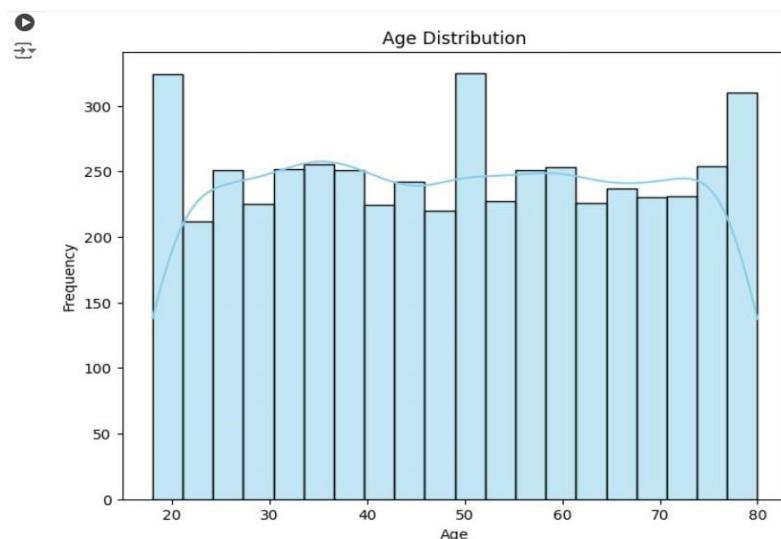
## Dataset

In this data set, images are given as URLs together with details of individuals. Attributes like name, age, gender, and location of individuals are included in the data set.

Figure 3 shows the histogram with Kernel Density Estimate the frequency distribution with the attribute “Age”. Each bar in the histogram represents the number of data points that fall under the given range. From the figure we identified that the age below 20 has highest frequency distribution. Figure 4 shows the bar graph with the distribution of countries. Here each bar represents each country with the count as frequency. From this bar graph the majority of the people belongs to the country named as “USA”. Figure 5 represents the pie chart of gender distribution. From the dataset we could observe the percentage of male and female from the specified component “gender”. Through this pie chart we have observed that Female make up to 50,8% and male make up to 49,2%.

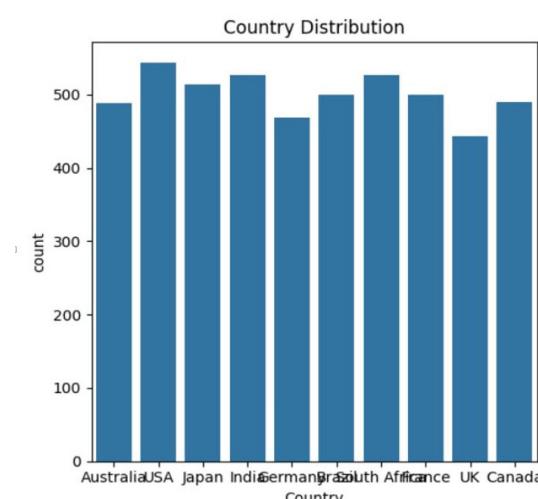
**Figure 3.**

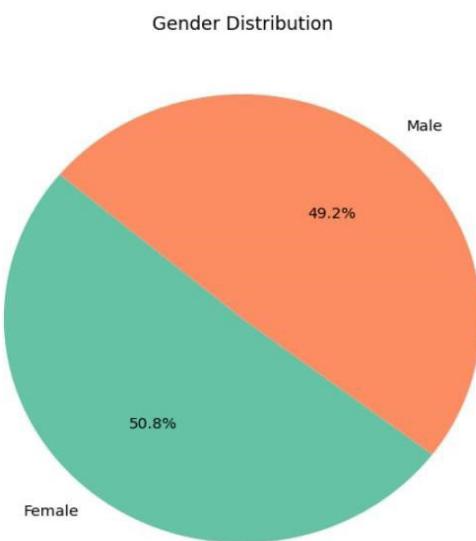
*Histogram with the attribute “Age”*



**Figure 4.**

*Bar graph with countries distribution*



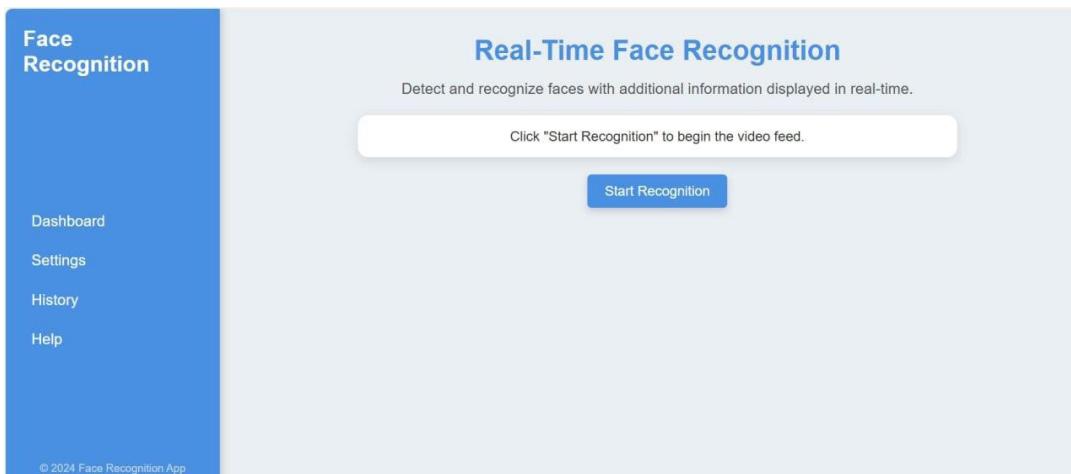
**Figure 5.***Pie chart of gender attribute*

### Data Preprocessing

During preprocessing, we use the `head()` function to display the first five rows of data, giving us an idea of its organization, e.g., column labels and types. The `tail()` function provides us with the last five rows, which help us verify the distribution and consistency of data. The `info()` function provides us with a concise overview, including column labels, data types, non-null values, and memory usage. The `describe()` method provides statistical data such as mean, median, standard deviation, min, max, and count that help in understanding data distribution. Furthermore, applying `isnull().sum()` to manage missing values helps in identifying and filling missing places in the data, and `fillna()` or `dropna()` is applied to fill or drop them. Encoding categorical variables with `pd.get_dummies()` or `LabelEncoder()` helps in converting non-numeric data to make it compatible to use with the model. Numerical feature scaling methods like Min-Max Scaling (`MinMaxScaler`) or Standardization (`StandardScaler`) help in scaling numerical features to enhance the performance of the model.

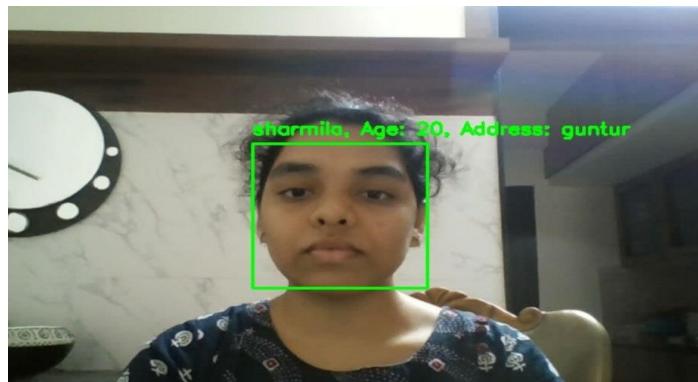
### RESULTS AND DISCUSSION

In this project, a face image database was created for building a real-time face recognition system using OpenCV and CNN. The database was divided into training and testing subsets in order to get an accurate model. Face detection was performed using OpenCV and other image preprocessing operations such as conversion to grayscale and equal resizing were performed. These preprocessing operations normalized the dataset for better feature extraction. These neural networks would be trained and could subsequently identify faces separately from the extracted features. Figures 6 and 7 present the prototype of the face recognition system.

**Figure 6.***User interface of the ConfigFace*

**Figure 7.**

Face detection module



The performance of the resulting system was verified with never-before-input training face data to the model. The performance was satisfactory, yielding strong recognition capability in test sets and variant faces. As noted from figure 5, the model performed very well, having identified some subjects and faces with precision. After successful model training, the application was realized.

Although this project effectively employed a real-time face recognition system based on OpenCV and CNN, there are a few directions for potential improvement that can be investigated. One of them is employing deeper neural networks or more sophisticated architectures, i.e., ResNet or VGG, to increase accuracy, especially under difficult conditions like changing illumination, occlusion, or changing facial expressions.

Further, the system could be made extensible to include mask detection, which is pertinent in today's world where masks are universally used. Further, the inclusion of methods to deal with pose variations, age progression, and real-time optimization could make the system much more powerful, and thus more dependable under various scenarios.

## CONCLUSIONS

In this project, a novel face recognition system is proposed utilizing OpenCV and CNN model. The aim of this project was to identify faces in a given dataset and train the model to be utilized within existing video streams. The results showed that it was a hard task to identify faces but the CNN model functioned as predicted, identifying characteristic facial features and identifying individuals as expected. The performance of the model was tested with precision, recall, and F1-score and proved its efficiency in identifying various faces.

This project has numerous practical applications, especially in security systems, attendance, and access control. The use of face recognition technology in most sectors increases security as well as biometric identification procedures. The future development can be extended to other areas of improvement, including the use of deeper neural networks for better performance, enhancing the generalizability of the model across datasets, and real-time implementation with low latency. The integration of face mask detection and pose variation techniques can also enhance the system's robustness against dynamic conditions.

## ACKNOWLEDGEMENT

I would also like to express my sincere gratitude towards the KL University administration for providing me with excellent facilities that have supported a significant degree to this project. My heartfelt appreciation too towards my teachers for their helpful recommendations, motivation, and well-wishing suggestions throughout this project.

## REFERENCES

- Coşkun, M., Uçar, A., Yıldırım, Ö., & Demir, Y. (2017). Face recognition based on convolutional neural network. *2017 International Conference on Modern Electrical and Energy Systems (MEES)*. IEEE. <https://doi.org/10.1109/MEES.2017.8248937>
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 770-778.
- Kamencay, P., Benco, M., Mizdos, T., & Radil, R. (2017). A new method for face recognition using convolutional neural network. *Advances in Electrical and Electronic Engineering*, 15(4), 663-672. <https://doi.org/10.15598/aeee. v15i4.2384>
- Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 4401-4410.

Kasar, M. M., Bhattacharyya, D., & Kim, T. H. (2016). Face recognition using neural network: A review. *International Journal of Security and Its Applications*, 10(3), 81-100.

Khalajzadeh, H., Mansouri, M., & Teshnehlab, M. (2014). Face recognition using convolutional neural network and simple logistic classifier. In *Soft Computing in Industrial Applications* (pp. 197-207). Springer International Publishing.

Khan, S., Rahmani, H., Shah, S. A. A., & Bennamoun, M. (2019). Facial recognition using convolutional neural networks and implementation on smart glasses. *2019 International Conference on Information Science and Communication Technology (ICISCT)*. IEEE.

Liu, W., Wen, Y., Yu, Z., & Yang, M. (2019). Face recognition using scale-invariant feature transform and CNNs. *IEEE Transactions on Image Processing*, 28(5), 2047-2060. <https://doi.org/10.1109/TIP.2018.2886767>

Nakada, M., Wang, H., & Terzopoulos, D. (2017). AcFR: Active face recognition using convolutional neural networks. *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops*.

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. *Journal of Big Data*, 6(1), 60. <https://doi.org/10.1186/s40537-019-0197-0>

Taigman, Y., Yang, M., Ranzato, M., & Wolf, L. (2014). DeepFace: Closing the gap to human-level performance in face verification. *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 1701-1708.

Xie, Z., Li, J., & Shi, H. (2019). A face recognition method based on CNN. *Journal of Physics: Conference Series*, 1395(1), 012042. IOP Publishing. <https://doi.org/10.1088/1742-6596/1395/1/012042>

Yang, Y.-X., et al. (2018). Face recognition using the SR-CNN model. *Sensors*, 18(12), 4237. <https://doi.org/10.3390/s18124237>

Zhao, W., et al. (2018). Real-time facial recognition using smart glasses. *International Journal of Intelligent Systems and Applications*, 10(4), 73-81. <https://doi.org/10.5815/ijisa.2018.04.07>

## FINANCING

No financing.

## CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

## AUTHORSHIP CONTRIBUTION

Data curation: Mallavarapu Manaswini, Patibandla Mahitha, Shaik Sharmila, D Mythrayee.

Methodology: Mallavarapu Manaswini, Patibandla Mahitha, Shaik Sharmila, D Mythrayee.

Software: Mallavarapu Manaswini, Patibandla Mahitha, Shaik Sharmila, D Mythrayee.

Drafting - original draft: Mallavarapu Manaswini, Patibandla Mahitha, Shaik Sharmila, D Mythrayee.

Writing - proofreading and editing: Mallavarapu Manaswini, Patibandla Mahitha, Shaik Sharmila, D Mythrayee.